Projectile Motion Worksheet

1. A ball is thrown horizontally from the top of a vertical cliff. The cliff is 50 m high and the ball lands 60 m from the bottom of the cliff.
(a) How long does it take for the ball to reach the bottom of the cliff?
(b) What is the horizontal speed of the ball?
(c) What is the vertical speed of the ball as it lands?
2. A tennis ball is hit horizontally from the top of a high building. It takes 4 seconds to reach the ground and it lands 80 m from the building.
(a) What is the height of the building?
(b) At what vertical velocity does the ball hit the ground?
(c) What is its horizontal velocity?
(d) What is its resultant velocity and at what angle does it hit the ground?
3. An object is projected horizontally at a speed of $16 \mathrm{~m} / \mathrm{s}$ into the sea from a cliff top of height 45.0 m . Calculate:
(a) how long it takes to reach the sea.
(b) how far it travels horizontally.
(c) its impact vertical velocity.
4. On August 25, 1894, Chicago catcher William Schriver caught a baseball thrown from the top of the Washington Monument (169.16 m).
(a) If the ball was thrown horizontally from the top of the monument with a speed of $5.00 \mathrm{~m} / \mathrm{s}$, where did it land?
(b) What was the ball's speed and direction of motion when caught?
5. A swimmer runs horizontally off a diving board with a speed of $2.50 \mathrm{~m} / \mathrm{s}$ and hits the water a horizontal distance of 1.96 m from the end of the board.
(a) How high above the water was the diving board?
(b) If the swimmer runs off the board with a reduced speed, does it take more, less, or the same time to reach the water?
6. The great, grey-green Zambezi River flows over Victoria Falls in south central Africa. The falls are approximately 108 m high. If the river is flowing horizontally at $3.60 \mathrm{~m} / \mathrm{s}$ just before going over the falls, what is the speed of the water when it hits the bottom? Assume the water is in free-fall as it drops.
7. A mountain climber jumps a $3.0-\mathrm{m}$ wide crevasse by leaping horizontally with a speed of $8.0 \mathrm{~m} / \mathrm{s}$. If the climber's direction of motion on landing is 45° below the horizontal, what is the height difference between the two sides of the crevasse?
8. A scientist wants to find out how fast he can throw a ball. He throws the ball horizontally from a height of 2 m and it lands 20 m away from where he is standing. Calculate the original velocity of the ball.
9. An astronaut on the planet Zircon tosses a rock horizontally with a speed of $6.75 \mathrm{~m} / \mathrm{s}$. The rock falls through a vertical distance of 1.20 m and lands a horizontal distance of 8.95 m from the astronaut. What is the acceleration of gravity on Zircon?
10. Pitcher's mounds are raised to compensate for the vertical drop of the ball as it travels 18 m to the catcher.
(a) If a pitch is thrown horizontally with an initial speed of $32 \mathrm{~m} / \mathrm{s}$, how far does it drop by the time it reaches the catcher?
(b) If the speed of the pitch is increased, does the drop distance increase, decrease, or stay the same? Explain.
(c) If this baseball game were to be played on the moon, would the drop distance increase, decrease, or stay the same? Explain.
11. In a game of basketball, a forward makes a bounce pass to the center. The ball is thrown with an initial speed of $4.30 \mathrm{~m} / \mathrm{s}$ at an angle of 15.0° below the horizontal. It is released 0.800 m above the floor. What horizontal distance does the ball cover before bouncing?
12. When the dried up seed pod of a scotch broom plant bursts open, it shoots out a seed with an initial velocity of $2.7 \mathrm{~m} / \mathrm{s}$ at an angle of 60.0° above the horizontal. The seed pod is located 1.0 m above the ground.
(a) How long does it take for the seed to land?
(b) What horizontal distance does it cover during its flight?
13. A fire hose ejects a stream of water at an angle of 35.0° above the horizontal. The water leaves the nozzle with a speed of $25.0 \mathrm{~m} / \mathrm{s}$. If the water behaves like a projectile, how far from a building should the fire hose be located to hit the highest possible fire?
14. A baseball player hits a home run, and the ball lands in the left-field seats, 7.50 m above the point at which it was hit. It lands with a velocity of $36.0 \mathrm{~m} / \mathrm{s}$ at an angle of 28.0° below the horizontal. Ignoring air resistance, calculate the initial velocity (magnitude and direction) with which the ball leaves the bat.
15. The "hang time" of a punt is measured to be 4.50 s . If the ball was kicked at an angle of 63.0° above the horizontal and was caught at the same level from which it was kicked, what was its initial speed?
16. On a hot summer day, a young girl swings on a rope above the local swimming hole. When she lets go of her rope, her initial velocity is $2.25 \mathrm{~m} / \mathrm{s}$ at an angle of 35.0° above the horizontal. If she is in flight for 1.60 s , how high above the water was she when she let go of the rope?
17. A soccer ball is kicked with an initial speed of $10.2 \mathrm{~m} / \mathrm{s}$ in a direction 25.0° above the horizontal.
(a) Calculate the magnitude and direction of its velocity at 0.250 s and 0.500 s after being kicked.
(b) Is the ball at its greatest height before or after 0.500 s ? Explain.
18. In a friendly game of handball, you hit the ball essentially at ground level and send it toward the wall with a speed of $13.0 \mathrm{~m} / \mathrm{s}$ at an angle of 20.0° above the horizontal.
(a) How long does it take for the ball to reach the wall if it is 5.2 m away?
(b) How high is the ball when it hits the wall?
(c) What are the magnitude and direction of the ball's velocity when it strikes the wall?
(d) Has the ball reached the highest point of its trajectory at this time? Explain.
19. During a match a football is kicked upwards at an angle of 30° to the horizontal and leaves the ground in this direction with a velocity of magnitude $12 \mathrm{~m} / \mathrm{s}$. A player catches the ball 0.50 s before it hits the ground.
(a) What is the maximum height that the ball reaches?
(b) At what height is the ball caught?
20. An archerfish hunts by dislodging an unsuspecting insect from its resting place with a stream of water expelled from the fish's mouth. Suppose the archerfish squirts water with an initial speed of $2.30 \mathrm{~m} / \mathrm{s}$ at a beetle on a leaf 3.00 cm above the water's surface.
(a) If the fish aims in such a way that the stream of water is moving horizontally when it hits the beetle, what is the launch angle?
(b) How much time does the beetle have to react?
(c) What is the horizontal distance between the fish and the beetle when the water is launched?
